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It is known that the application of an inappropriate kinetic method to the thermal analysis of 
complex systems can lead to misleading results. To avoid this problem, the new parameter 
'instantaneous mean activation energy' is introduced and the Ozawa-Flynn-Wall method is 
assessed as a means of obtaining it. It is concluded that good results can generally be obtained by 
this method, provided that the various reactions occurring in the complex system are of the same 
type. The pyrolysis of coal is considered as a possible application of the method. 

During thermal decomposition a variety of reactions can be occurring 
simultaneously. This is s.een in the case of coal pyrolysis, for example, due to its 
inherent complexity and inhomogeneity. However, even pure polymers may 
decompose via oligomers of various sizes, and the different pathways may well have 
different kinetic parameters. Analogous situations can be found in other branches 
of thermal analysis, such as TPD from heterogeneous surfaces [1, 2]. A full kinetic 
analysis of such complex systems is generally not feasible, but some kind of 
'effective' or 'average' kinetic description is still needed. It is important that these 
effective kinetic parameters are 'fundamental' enough to be invariant over a range 
of conditions. In this paper the parameter 'instantaneous mean activation energy' is 
recommended, and it is shown that the Ozawa-Flynn-Wall method [3-5] provides 
a useful way of obtaining it. 

Singh,-run methods 

Methods which involve a single non-isothermal thermal decomposition 
cxperiment are attractive because of their speed [6]. However, numerical examples 
[7, 8] have shown that if several reactions are occurring together then the observed 
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activation energy can be substantially less than that of any of the component 
reactions. This result is the probable explanation of the anomalously low activation 
energies obtained for coal pyrolysis [9, 12]. This effect can be understood readily 
because a low activation energy results in broad TG, DTG etc traces, as shown in 
Fig. 1. A broad trace is also obtained when several different processes occur with 
overlapping temperature ranges [7, 8]. 
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Fig. I The effect o f  activation energy on calculated T G  curves. 
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b : f ( e ) =  I - e , A  = 3 . 9 3 •  1 1 0 k J m o l - ~  
Heating rate = 10 deg rain-  ~ 

There are, therefore, good reasons for rejecting single-experiment methods on 
fundamental grounds. In addition, it has been shown that the parameters usually 
obtained by such methods are dependent on the experimental conditions employed 
[11, 13, 14], making them of little practical value. 

Description of the Ozawa-Flynn- Wall (OFW) method 

The OFW method, proposed independently by Ozawa [3] and by Flynn and Wall 
[4], is sometimes known as the isoconversional method [5]. The major advantage of 
this method is that it does not require any assumptions concerning the form of the 
kinetic equation, other than that there is an Arrhenius-type temperature 
dependence, as in Eq. (1). If the heating rate is constant, then the integral form of 
this equation is Eq. (2). 

dct 
dt - f(ct)A exp ( - E/RT) (1) 

T T 

f df__~)= F ( ~ ) = f l f e x p ( - E / R T ) d T  
o o 

(2) 
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AE 
F(a) = ~ exp (a-  bE/RT) (3) 

The integral on the right hand side of Eq. (2) can be represented by the Doyle 
approximation [15], Eq. (3). In this equation, the parameters a and b are not strictly 
constant but depend slightly on the value of E/RT. However, b is almost always 
close to 1 and a value of 1.05 is a good initial guess. Using this value of b, a good first 
estimate of E can be determined, as described below, and a more appropriate value 
of b can then be obtained from tables [5]. This is normally sufficient, but iteration 
can be continued until the desired degree of self-consistency is achieved. 

By taking logarithms of both sides of Eq. (3) and rearranging, Eq. (4) is obtained. 

l o e -  RT +ln + a  (4) 

This equation can be used to obtain E if several experimental runs are performed 
at different heating rates. A specific degree of conversion is considered, and the 
temperature required for this degree of conversion is determined for each heating 
rate. (The fact that the extent of  conversion is kept constant means that the form of 
F(e) is irrelevant, making it possible to obtain the activation energy even when the 
kinetic equation is not known.) If log fl is plotted against 1/Tthe gradient is - bE/R, 
and so E can be determined for the particular degree of conversion being considered. 
Separate calculations can then be carried out to obtain E for other degrees of 
conversion. The OFW method is therefore potentially suited for use in systems 
where many reactions are occurring, such that the average activation energy varies 
with time. However, the mathematical basis of the method [3-5] assumes a single 
reaction. It is therefore necessary to establish whether this method is indeed valid 
for complex systems, especially in the light of the misleading results given by certain 
other methods. 

Application of the OFW method to multiple independent reactions 

For complex systems there is no apriori reason to suppose that an OFW plot will 
give a straight line. However, even if the plot is curved it should be possible to obtain 
a good estimate of the gradient near the centre of the temperature range studied. In 
fact, unpublished experiments in this laboratory have shown that the plots for the 
pyrolysis of coal or paper are very close to being straight lines, and that the slope of 
the tangent can be determined quite easily. In mathematical terms, the gradient 
obtained in the way is (t~[ln fl]/~[l/T])~, i.e. the rate of change ofln//with respect to 
I/T at constant conversion. Application of the OFW method will then give an 
apparent activation energy, Eovw, according to Eq. (5). 
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(5) 

In order to establish the physical significance of EoFw, it is necessary to obtain an 
expression for the partial differential on the right hand side of Eq. (5). 

Unfortunately, the required partial differential, (afl/OT)~, cannot be obtained 
directly. However, because at is a function offl  and Talone it is possible to use Eq. 
(7) to express this partial differential in terms of  two more easily accessible partial 
differentials. 

�9 = - ~ a ~ r (6) 

These can be obtained by differentiation of Eq. (8), which is simply a statement of 
the fact that the total extent of  conversion, ~t, is the sum of  the contributions from 
the individual reactions, c~0ti. 

(~ = 2 Ci~i 

(~fl )r - ~ Z c,A,E,f~(ct,)exp (a-bE,/RT) 
(ga) 

-ff B (1o) 

~ RZT2 fl ~ciA,E~fi(ai)exp(a-bEi/RT) 
(10a) 

Thus Eqs (9) and (10) are obtained, which give the two partial differentials in terms 
of  the corresponding partial differentials for the individual reactions. The latter are 
readily obtained by differentiation of  Eq. (3), so that Eqs (9) and (10) become Eqs 
(9a) and (10a). 

Putting these expressions into Eq. (5) via Eq. (7) gives the apparent activation 
energy in terms of the kinetic parameters of the component reactions, Eq. (I I). 

~[c iJ i (oc i )A  i exp ( - bEi/ RT )E 2] 
E~ = S,[cJi(oq)A i exp ( - bE/RT)E~] ( ! ! ) 

This equation can be simplified by noting that the expressions are similar to the 
rate equations for the individual reactions, Eq. (12), 
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d~ i 
vi = ci-d-i- = cifi(~i)Ai exp ( -  E J R T )  (12) 

and by introducing a new parameter, the 'instantaneous mean activation energy', 
Ei.~,, as defined by Eq. (13). 

r, SviE i 
Ein,t - Ev i (13) 

It should be noted that this is an average activation energy for the reactions 
occurring at a given instant, and not an average for the overall reaction, as used 
elsewhere [16]. By substituting Eqs (12) and (13) into Eq. (11), the relationship 
between Eovw and Ei~]st can be obtained, Eq. (14). 

where 

Z{v; exp [ -  ( b -  1)AE,/RT] (Ei.st + AE~)AEi} (14) 
Eov w = Ei.st+ Z{v i exp[_ (b_ l )AE j RT] ( E i n s t +  AEi)} 

AEI = E i -  El.st (15) 

The difference between the two 'activation energies' is the rather complicated 
expression on the right hand side of Eq. (14). This can be simplified by applying Eqs 
(16) to (18), and by neglecting terms in AE 3 in the numerator or AE z in the 
denominator. 

exp [ -  ( b -  1)AE,/RT] ~ 1 ( b -  1)AE i (16) 
R T  

s = 0 (17) 

SviAE { 
_rv~ -/~z~ (18) 

Thus the relationship between Eovw and Einst reduces to Eq. (19). 

( b -  I)E~., t /RT- 1 
Eovw = E i n s t -  Eins  t #:e (19) 

Eq. (19) makes use of the instantaneous second moment of the component 
activation energies, P2e- This is a measure of the spread of activation energies of the 
reactions occurring at the specified degree of conversion. For a large number of 
discrete reactions this will be the same as the statistical variance. However, as 
defined by Eq. (18), the second moment also exists for small numbers of reactions, 
or  for a continuum of reactions (but in this latter case the summations in Eq. (18) 
should be replaced by integrals). 
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As shown below, the final term in Eq. (19) is normally quite small and so Eovw is a 
close approximation to Ei,st. It should be noted that, in keeping with the aim of the 
OFW method, no assumptions have been made about the form of the rate 
equations of the individual reactions. 

Application of the OFW method to multiple competitive reactions 

For competitive reactions, the overall rate equation is given by Eq. (20). This 
equation cannot be integrated as it stands because the f~(~t) are unknown. 

d~t 
dt - Z f~(ct)Ai exp (Ei/RT ) (20) 

However, if it is assumed that each component reaction follows the same kinetic 
function, then, after application of the Doyle approximation,.:Eq. (20) can be 
integrated to give Eq. (21). This equation can be differentiated at constant ~ to give 
Eq. (22). 

1 
F(ot) = ~-~ SAIE~ exp (a -  E,/RT) (21) 

(Off)  bfl E[AiE2iexp(a-E,/RT)] 
- ~  , = RT 2 E[AiE i exp (a -  Ei/RT)] (22) 

This expression is identical to the one obtained for the case of multiple parallel 
reactions (e.g. by substitution of Eqs (9a) and (10a) into Eq. (7)). 

Thus, in the specific case where each component obeys the same kinetic law the 
relationship between EOF w and Einst will be the same as has been derived for parallel 
reactions. Mathematical intractability prohibits the assessment of EoF w for 
competing reactions obeying different kinetic laws, 

Accuracy of the OFW method when applied to multiple reactions 

Equation (19) shows that the difference between the observed activation energy, 
EoFw, and the mean activation energy, Einst , depends on the spread of activation 
energies, as given by at.  In practice this spread will be limited by the nature of the 
reactions occurring. Two cases will be considered here: firstly, a situation in which 
the pre-exp0nential factors of the component reactions are equal; and secondly, a 
situation in which a compensation effect occurs. 

If the Arrhenius pre-exponential factors are constant, then variation in the 
activation energies will result in the component reactions occurring in different 
temperature regions. Thus the spread of activation energies at any given 
temperature is quite small. The results from a numerical example are given in Table 
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1. For this example, the value of the activation energies, although differing by only 
14 kJ tool- 1, were chosen so as to maximise the instantaneous standard deviation 
(i.e. the worst possible case). It can be seen that Eov w is always close to Ei,st (0.1% 
error), and that the errors are predicted quite well by Eq. (19). 

If the pre-exponential factors vary in such a way as to compensate for the change 
in the activation energy, then a much greater spread of activation energies can be 
found at a given temperature. However, choosing realistic ranges for the pre- 
exponential factor still results in Eovw being close to Ei,st, as shown in Tables 2 and 
3 (0.6% error). In these examples, the values of A~ and E~ were chosen so as to give 
maximum overlap of the reactions. At these moderate error levels, excellent 
agreement was obtained with Eq. (19). 

Table ! Application of the OFW method to a pair of first-order independent reactions with equal pre- 

exponential factors 

A~ = I x l 0  ~3 s - J ;  E~ = 193 kJ rnol  -~  

A z = I x l013 s - I ;  E 2 = 207 kJ tool -~ 

Heating rates: 0.316 deg min -* and 3.16 deg rain -~ 

Calculated 
El .... PzE, Eovw, EoFw - -  E i n s , ,  

error ~, 
kJ tool- 1 kJ tool - ~ kJ tool - 1 kJ tool- 1 

kJ rnol - 

0.1 193.986 3.579 193.922 - .064  - .063 

0.2 193.293 4.051 194.214 - .079  - .080  

0.3 194.765 4.664 194.666 - .098  - .105 

0.4 195.627 5.464 195.495 - .132  - .145 

0.5 197.591 6.572 197.395 - .195 - .208 

0.6 202.649 6.468 202.440 - .209  - .197  

(1.7 206.697 1.992 206.692 - .005 - .018 

0.8 206.996 0.211 207.006 .009 .000 

(I.9 207.000 0.004 207.000 .000 .000 

": calculated according to Eq. 19. 

Limi ta t ions  o f  the m e t h o d  

The derivation of the OFW method is strictly independent of the property being 
observed, whether weight (TG), evolved/absorbed heat (DSC), or cumulative yield 
of gas (EGA, TPD). However, the last three methods normally give rates of 
reaction, from which cumulative yields must be obtained by 
summation/integration. This process may introduce significant errors, which would 
limit the application of the method to those situations where very accurate data is 
available. 

A consequence of the requirement for a well-defined degree of conversion is that 
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Table 2 A p p l i c a t i o n  o f  the  O F W  m e t h o d  to  t w o  i n d e p e n d e n t  r e a c t i o n s  wi th  c o m p e n s a t i n g  A r r h e n i u s  

p a r a m e t e r s  

A t = 1 • 1013 s - l ;  El  = 200 kJ m o l  - I  

A 2 = 4 . 5 x  1014 s - l ;  E 2 = 220  kJ  m o l  - l  

H e a t i n g  ra tes :  0 .316  d e g  m i n -  1 a n d  3.16 d e g  m i n -  l 

C a l c u l a t e d  
El . . . .  # 2r, Eovw , Eorw - El . . . .  

e r ro r ,  
kJ mo l  - i kJ m o l -  l kJ m o l -  l kJ  mo l  - t 

kJ  t o o l -  l 

0.1 209.67  9.98 209.21 - 0 .46 - 0 .46 

0.3 210.25 9.99 " 209.79  - 0 .46 - 0 .46 

0.5 210.45 9.99 209.99  - 0 .46 - 0.45 

0.7 210.41 9.99 209.95 - 0 .46 - 0.45 

0.9 209.76  9.97 209.31 - 0.45 - 0.45 

Table 3 A p p l i c a t i o n  o f  the  O F W  m e t h o d  to  th ree  i n d e p e n d e n t  r e a c t i o n s  wi th  c o m p e n s a t i n g  A r r h e n i u s  

p a r a m e t e r s  

A 1 = 2 . 2 2 x  10 lz s - l ;  E t = 180 kJ m o l  - I  

A 2 = I x 10 ~3 s - l ;  E 2 = 200 kJ m o l  - l  

A 3 : 4 . 5 •  l014 s--l; E 3 = 220  kJ m o l  - l  

H e a t i n g  ra tes :  0 .316  d e g  m i n  - l  a n d  3.16 d e g  m i n  - I  

C a l c u l a t e d  
El . . . .  #2t~, EoFw, E o F w -  Ei . . . .  

kJ  m o l -  ~ kJ m o l  I kJ m o l -  1 kJ  m o l -  t e r ro r ,  
kJ t o o l -  

0.1 199.02 16.26 197.74 - . 1 . 2 7  - .  1.28 

0.3 200.65 16.29 199.38 - .1.27 - , 1 . 2 7  

0.5 201.23 16.27 199.97 - .  1.26 - .  1.26 

0.7 201 .14  16.26 199.88 - .  1.26 - .  1.26 

0.9 199.36 16.13 199.88 - .  1.23 - . 1 . 2 4  

the initial and final states must be the same for each heating rate. For a set of truly 
independent reactions this condition will always be satisfied, but competitive 
reactions may cause problems, as described below for coal pyrolysis. 

In the numerical examples given above it was assumed theft the pre-exponential 
factors had values which were reasonable for non-catalytic chemical reactions. This 
meant that the activation energies were constrained to certain limits, if the reactions 
were to be truly overlapping. However, if the component reactions are of very 
different types, e.g. catalytic and non-catalytic, then this constraint is removed, and 
a much larger spread of activation energies is possible. In these circumstances Eq. 
(19) indicates that the OFW method could yield a value for the activation energy 
which is considerably less than the instantaneous mean. In such extreme cases the 
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use of several different heating rates is still valuable for separating independent 
reactions [17], and for highlighting the presence of competitive reactions [17, 18]. 

Application of the OFW method to coal pyrolysis 

Weight loss during coal pyrolysis has been successfully modelled using multiple 
independent reactions with a gaussian spread of activation energies [9, 14, 19, 20]. 
However, it has been noted that the assignment of a value to the overall mean 
activation energy can be ambiguous [14]. Application of the OFW method could 
provide a suitable way of fixing this parameter at a realistic value. The fact that the 
model can involve a broad spread of activation energies is in no way inconsistent 
with this suggestion, because at any given degree of conversion only a limited range 
of reactions are actually proceeding at a significant rate. 

A potential problem associated with the application of multiple heating rate 
methods to coal pyrolysis is the presence of competition between pyrolysis and 
either gasification or combustion. This means that the pyrolysis must be carried out 
in an inert atmosphere and, in particular, it is necessary to rigorously exclude 
oxygen. In the presence of reactive gases, the weight loss at low heating rates can be 
greater than that for high heating rates, due to the increased time available for 
gasilication. In such circumstances it would be impossible to define an ~extent of 
reaction' which was independent of heating rate. 

The discussion here is primarily concerned with the overall modelling of coal 
pyrolysis. A more complete understanding of the pyrolysis process requires a study 
of individual volatile species. The pattern of evolution of coal volatites strongly 
suggests that many different reactions contribute to the production of any given 
species [21,22]. Use of the OFW method in such a situation is theoretically possible, 
but may be restricted by the nature of EGA data, as described above. 

Conclusions 

The new parameter 'instantaneous mean activation energy', Einst, has been 
introduced for systems of overlapping reactions. 

For independent reactions, a mathematical analysis of the Ozawa-Flynn-Wall 
method indicates that it is suitable for obtaining Ein.~ t from thermogravimetry~ 
subject to the limitations given below. The applicability of the method is not 
affected by the form of the individual kinetic equations. Numerical examples are 
given which illustrate these results for 2 or 3 independent overlapping reactions 
having a moderate spread of activation energies and pre-exponential factors. 

The method has also been shown to be applicable to multiple competitive 
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reactions in the specific case where the component reactions have the same kinetic 
form. 

The method is predicted to fail if reactions of widely differing type (and hence 
having very different activation energies) are occurring simultaneously. Competi- 
tive reactions which have different products also render the method inapplicable. 

The author wishes to thank the British Gas Corporation for permission to publish this work. 
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Table of symbols 

Parameter used in the Doyle approximation (Eq. (3)). 
Arrhenius pre-exponentiai factor. 
Parameter used in the Doyle approximation (Eq. (3)). 
Contribution of an individual reaction to the overall reaction. 
Instantaneous mean activation energy (Eq. (13)). 
Activation energy as calculated by the Ozawa-Flynn-Wall method. 
Function describing the dependence of the rate constant on the degree of 
conversion. 

F(at) Integral of l/f(0t) (Eq. (2)). 
i (subscript) Denotes a component reaction. 
R 
t 

T 
II 

~2E 

Gas constant. 
Time. 
Temperature. 
Reaction rate. 
Degree of conversion. 
Heating rate. 
Instantaneous second moment of activation energies (Eq. (18)). 

References 

I A.W. Czanderna, J. R. Biegen and W. Kollen, 
J. Colloid. Interface Sci., 34 (1970) 406. 

2 Y. Tokoro, T. Uchijima and Y. Yoneda, J. 
Catal., 37 (1975) 44. 

3 T. Ozawa, Bull. Chem. S.oc. Japan, 38 (1965) 
1881. 

4 J. H. Flynn and L. A. Wall, Polym. Lett., 4 
(1966) 323. 

5 J. H. Flynn, J. Thermal Anal., 27 (1983) 95. 
6 M. A. Serageldin and Wei-ping Pan. Ther- 

mochimica Acta, 71 (1983) I. 
7 H. Juentgen and K. H. van H e e l  Fortschr. 

Chem. Forsch, 13 (1970) 601. 
8 J. P. Elder, J. Thermal Anal., 29 (1984) 1327. 
9 D. B. Anthony and J. B. Howard, AICHE, J., 

22 (1976) 625. 

J. Thermal Anal. 32, 1987 



DOWDY: MEANINGFUL ACTIVATION ENERGIES FOR COMPLEX SYSTEMS I. 147 

10 J.J. Reuther, R. D. Daley, J. J. Warchol and J. 
A. Withum, Fuel, 63 (1984) 604. 

I1 P. R. Solomon, D. G. Hamblen, R. M. 
Carangelo, J. R. Markham and M. D. 
DiTaranto, Prepr. Amer. Chem. Soc. Div. 
Fuel Chem., 29 (1984) 83. 

12 E. M. Suuberg, W. A. Peters and J. B. 
Howard, Ind. Eng. Chem. Process Des. Dev.,. 
17 (1978) 37. 

13 J. B. Howard, Chemistry of Coal Utilization, 
Second Supplementary Volume, M. A. Elliot 
(Ed.), Wiley-lnterscience, New York, 1981, p. 
727. 

14 D, B. Anthony, J. B. Howard, H. C. Hottel 

and H. P. Meissner, 15th Int. Syrup. Combus- 
tion, 1974, p. 1303. 

15 C. D. Doyle, J. Appl. Polymer Sci., 6 (1962) 
639. 

16 J. W. Cumming, Fuel, 63 (1984) 1436. 
17 J. H. Flynn, Thermochim. Acta, 37 (1980) 225. 
18 T. Ozawa, J. Thermal Anal., 7 (1975) 601. 
19 K. M. Sprouse and M. D. Schuman, Combust. 

Flame, 43 (1981) 265. 

20 D. B. Anthony, J. B. Howard, H. C. Hottel 
and H. P. Meissner, Fuel, 55 (1976) 121. 

21 Page 739 of ref. 13. 
22 V. Koch, H. Juentgen and W. Peters, 

Brennstoff-chemie, 50 (1969) 369. 

Zusammenfassung - -  Es ist bekannt, dab die Anwendung einer ungeeigneten kinetischen Methode bei 
der thermischen Analyse komplexer Systeme zu falschen Ergebnissen ffihren kann. Um dieses Problem 
zu vermeiden, wird der neue Parameter ,,momentane mittlere Aktivierungsenergie" eingefiihrt. Die 
Ozawa-Flynn-Wall-Methode wird als zur Bestimmung dieses Parameters geeignet angesehen. Es wird 
der Schlu6 gezogen, dab mit dieser Methode im allgemeinen gute Ergebnisse zu erhalten sein sollten, 
vorausgesetzt, dab die in komplexen Systemen verlaufenden verschiedenen Reaktionen vom gleichen 
Typ sind. Die Pyrolyse yon Kohle wird als m6gliche Anwendung dieser Methode angesehen. 

PealoMe --- HpHMeHeUHe HeCOOlBelClBytOillel'o KHHeTHqecKoFo MeTO~a K TepMHqeCKOMy aHaJ1H3y 
CJIO)KltblX CHc'reM MO)I(el llpldBeC'l'id K OWH6OqHblM pe3yJlbTaTaM, flJlg pemeHi4~l 3TOH upo6:leM~l 
BBO~HTCI~I HOBblfi napaMeTp ((MI'H OBeHHa$1 cpe~lII-I~l ~I 3HeprHa aranBauklH, n Mffro~[ 
O3aBa---tt~J]HHHa-Ba_ff.qa Hcno.~Ib3OBaH BJI~I noJlyqeHH~i 3TOrO napaMeTpa. C~aeJ~aHo 3aK.rflOqeHHe, qTO B 
O6llleM, DTHM MeTO~OM MOryT 61,1Tb HoJlyqeHbI xopomne pe3yJlbTaTbl, HO npn yCJ'IOBHH, tlTO 
tlpoTeKalolllHe B CJ'IOXCHO~ CHCTeMe peaKllnH ,qBJIg~OTCg O,/!HOFO H TOFO ace anna. CqHTaeTC~I, tlTO 3TOT 
MeTOa MO~eT 6bITb llpnMeHelt/LllJl IIHpo.rIH3a yrJIg. 
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